### INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

#### **BUILDING PHYSICS LABORATORY**

### CALCULATION REPORT No. 130 SF/22

**Date: 17 of June 2022** 

page (pages)

1 (3)

# Determination of installed thermal resistance into a roof and into a wall of MIX PR 80 according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall of MIX PR

80 according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

MIX PR 80

(identification of the specimen)

Customer:

(100111110111011011011011011)

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

### Calculation results:

| Roof slope angle, α                    | Calculation method reference no. | Calculation result, <i>R</i> , (m <sup>2</sup> ·K)/W |
|----------------------------------------|----------------------------------|------------------------------------------------------|
| Pitched roof ( $\alpha = 0^{\circ}$ )  | EN ISO 6946:2017                 | 6.04                                                 |
| Pitched roof ( $\alpha = 30^{\circ}$ ) |                                  | 6.12                                                 |
| Pitched roof ( $\alpha = 45^{\circ}$ ) |                                  | 6.16                                                 |
| Wall ( $\alpha = 90^{\circ}$ )         |                                  | 6.34                                                 |

R value for others pitched sloop (different  $\alpha$  value) can be determined by linear interpolation between two calculated R values

Calculation

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

made by: University of Technology

(Name of the organization)

Products used

Multilayer reflective insulation product PRO W (110 mm) (test report no. 129

in calculation:

SF/22 U)

Declared thickness of product PRO W - 80±10 mm

Panel of biosourced insulation with vegetal fibers (rice straw) PR 80 (80 mm)

(recalculated by the test report no. 168-1 SFL/21 R)

Additional information:

Application, 2022-06-09

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

(approves the test results)

K. Banionis

(n., surname)

Calculated by (calculation made by)

\_\_NOMENT

retuvos Rest

Stonkuvienė

(n., surname)

irey

(signature)

S.P.

statybos

Validity – the named discard results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Web site: www.ktu.edu/asi/en/; E.mail: statybine.fizika@ktu.lt

2(3)

# Annex 1: Calculation results

Table 1: Products R- values

| Product                                                           | Thermal resistance R, (m <sup>2</sup> ·K)/W      |  |  |
|-------------------------------------------------------------------|--------------------------------------------------|--|--|
| PRO W (test report n° 129 SF/22 U)                                | $R_{core90/90} = 3.25$                           |  |  |
| PR 80 (test report n° 168-1 SFL/21 R)                             | $R_{recalc} = 2.05$                              |  |  |
| "Rcore90/90" is the declared R core value following EN 16012 + 41 |                                                  |  |  |
| "Rcore90/90" is calculated on 4 results of 4 samples co           | ame from 4 different fabrication dates following |  |  |
| EN $16012 + A1$ (and using the fractile 90/90 calculation         |                                                  |  |  |



| Tem | perature regime 20°C / 0°C        |
|-----|-----------------------------------|
| 1.  | Unventilated Air cavity #1, 20 mm |
| 2.  | PR 80, 80 mm                      |
| 3.  | Unventilated Air cavity #2, 20 mm |
| 4.  | PRO W, 110 mm                     |
| 5.  | Ventilated Air cavity #3, 20 mm   |

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope  $\alpha = 0^{\circ}$  (EN ISO 6946)

| MIX PR 80 installed on roof            |                             |         |        |
|----------------------------------------|-----------------------------|---------|--------|
| Angle: $\alpha = 0^{\circ}$            | Layer                       | R value | Unit   |
| Ascendant Heat Flux<br>(Winter period) | Unventilated Air cavity # 1 | 0.1515  | m²·K/W |
|                                        | PR 80                       | 2.05    | m²·K/W |
|                                        | Unventilated Air cavity # 2 | 0.4421  | m²·K/W |
|                                        | PRO W                       | 3.25    | m²·K/W |
|                                        | Ventilated Air cavity # 3   | 0.1475  | m²·K/W |
|                                        | R Total                     | 6.04    | m²·K/W |

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope  $\alpha$  = 30° (EN ISO 6946)

| MIX PR 80 installed on roof            |                             |         |        |
|----------------------------------------|-----------------------------|---------|--------|
| Angle: $\alpha = 30^{\circ}$           | Layer                       | R value | Unit   |
| Ascendant Heat Flux<br>(Winter period) | Unventilated Air cavity # 1 | 0.1571  | m²·K/W |
|                                        | PR 80                       | 2.05    | m²·K/W |
|                                        | Unventilated Air cavity # 2 | 0.4929  | m²·K/W |
|                                        | PRO W                       | 3.25    | m²·K/W |
|                                        | Ventilated Air cavity # 3   | 0.1672  | m²·K/W |
|                                        | R Total                     | 6.12    | m²·K/W |

Table 4: Roof construction calculation results for slope  $\alpha$  = 45° (EN ISO 6946)

| MIX PR 80 installed on roof            |                             |         |        |
|----------------------------------------|-----------------------------|---------|--------|
| Angle: $\alpha = 45^{\circ}$           | Layer                       | R value | Unit   |
| Ascendant Heat Flux<br>(Winter period) | Unventilated Air cavity # 1 | 0.1600  | m²·K/W |
|                                        | PR 80                       | 2.05    | m²·K/W |
|                                        | Unventilated Air cavity # 2 | 0.5230  | m²·K/W |
|                                        | PRO W                       | 3.25    | m²·K/W |
|                                        | Ventilated Air cavity # 3   | 0.1792  | m²·K/W |
|                                        | R Total                     | 6.16    | m²·K/W |

Table 5: Wall construction calculation results for slope  $\alpha = 90^{\circ}$  (EN ISO 6946)

| MIX PR 80 installed on wall            |                             |         |        |
|----------------------------------------|-----------------------------|---------|--------|
| Angle: $\alpha = 90^{\circ}$           | Layer                       | R value | Unit   |
| Ascendant Heat Flux<br>(Winter period) | Unventilated Air cavity # 1 | 0.1695  | m²·K/W |
|                                        | PR 80                       | 2.05    | m²·K/W |
|                                        | Unventilated Air cavity # 2 | 0.6402  | m²·K/W |
|                                        | PRO W                       | 3.25    | m²·K/W |
|                                        | Ventilated Air cavity # 3   | 0.2336  | m²·K/W |
|                                        | R Total                     | 6.34    | m²·K/W |

## Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when MIX PR 80 is installed from the internal side of the Roof or the external part of the Roof.
- Calculations of R values are valid when MIX PR 80 is installed in agreement with the installation guidelines described into the manufacturer brochure.