INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 131 SF/22

Date: 17 of June 2022

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of MIX FIBRE DE BOIS according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall of MIX

FIBRE DE BOIS 80 according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

MIX FIBRE DE BOIS 80

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Pitched roof ($\alpha = 0^{\circ}$)	EN ISO 6946:2017	6.09
Pitched roof ($\alpha = 30^{\circ}$)		6.17
Pitched roof ($\alpha = 45^{\circ}$)		6.21
Wall ($\alpha = 90^{\circ}$)		6.39

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation made by:

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

University of Technology

(Name of the organization)

Products used Multilayer reflective insulation product PRO W (110 mm) (test report no. 129 SF/22 U)

in calculation:

Declared thickness of product PRO W - 80±10 mm

Panel of biosourced insulation with vegetal fibers PAVAFLEX CONFORT

(80 mm) (manufacturer SOPREMA SAS certificate: No.17/006/1259)

Additional information:

Application, 2022-06-09

OKUMENTAL

S.P.

rchitek

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

(approves the test results)

K. Banionis

(n., surname)

Calculated by

(calculation made by)

jetuvos Re

Stonkuvienė

surname)

(signature)

Validity - the named data and results refer exclusively to the tested and described specimens.

Notes on publication - no part of this document was be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 350799)

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W	
PRO W (test report No. 129 SF/22 U)	$R_{core90/90} = 3.25$	
PAVAFLEX CONFORT 80 (manufacturer	D 010	
SOPREMA SAS certificate: No.17/006/1259)	R=2.10	
"Rcore90/90" is the declared R core value following	EN 16012 + A1.	
"Rcore90/90" is calculated on 4 results of 4 samples	came from 4 different fabrication dates following	
EN 16012 + A1 (and using the fractile 90/90 calcula	ation rules $S_{R_{average}} = \sqrt{\frac{\sum (R_i - R_{average})^3}{}}$;).	

Tem	perature regime 20°C / 0°C
1.	Unventilated Air cavity #1, 20 mm
2.	PAVAFLEX CONFORT 80, 80 mm
3.	Unventilated Air cavity #2, 20 mm
4.	PRO W, 110 mm
5.	Ventilated Air cavity #3, 20 mm

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

MIX FIBRE DE BOIS 80 installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.1515	m²·K/W
	PAVAFLEX CONFORT 80	2.10	m²·K/W
	Unventilated Air cavity # 2	0.4421	m²·K/W
	PRO W	3.25	m²·K/W
	Ventilated Air cavity # 3	0.1475	m²·K/W
	R Total	6.09	m²·K/W

Table 3: Roof construction calculation results for slope $\alpha = 30^{\circ}$ (EN ISO 6946)

MIX FIBRE DE BOIS 80 installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.1571	m²·K/W
	PAVAFLEX CONFORT 80	2.10	m²·K/W
	Unventilated Air cavity # 2	0.4930	m²·K/W
	PRO W	3.25	m²·K/W
	Ventilated Air cavity # 3	0.1672	m²·K/W
	R Total	6.17	m²·K/W

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

MIX	FIBRE DE BOIS 80 installed on		V 130 0940)
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.1600	m²·K/W
	PAVAFLEX CONFORT 80	2.10	m²·K/W
	Unventilated Air cavity # 2	0.5231	m²·K/W
	PRO W	3.25	m²·K/W
	Ventilated Air cavity # 3	0.1792	m²·K/W
	R Total	6.21	m²·K/W

Table 5: Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN ISO 6946)

MIX	FIBRE DE BOIS 80 installed on		1130 6946)
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.1695	m²·K/W
	PAVAFLEX CONFORT 80	2.10	m ² ·K/W
	Unventilated Air cavity # 2	0.6403	m²·K/W
	PRO W	3.25	m²·K/W
	Ventilated Air cavity # 3	0.2336	m²·K/W
	R Total	6.39	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when MIX FIBRE DE BOIS 80 is installed from the internal side of the Roof or the external part of the Roof.
- Calculations of R values are valid when MIX FIBRE DE BOIS 80 is installed in agreement with the installation guidelines described into the manufacturer brochure.